Maritime shipping - International Council on Clean Transportation https://theicct.org/sector/maritime-shipping/ Independent research to benefit public health and mitigate climate change Fri, 16 Aug 2024 14:29:53 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.1 https://theicct.org/wp-content/uploads/2022/01/favicon-150x150.png Maritime shipping - International Council on Clean Transportation https://theicct.org/sector/maritime-shipping/ 32 32 Brasil traça um caminho para um futuro marítimo limpo com um seminário fundamental https://theicct.org/pt-brazil-charts-a-course-for-a-clean-maritime-future-with-a-pivotal-seminar-aug24/ Fri, 16 Aug 2024 04:10:57 +0000 https://theicct.org/?p=46295 Apresenta as principais lições aprendidas em um seminário realizado no Brasil e analisa um breve estudo de caso de um graneleiro do Brasil para a China.

The post Brasil traça um caminho para um futuro marítimo limpo com um seminário fundamental appeared first on International Council on Clean Transportation.

]]>

O seminário Transição Energética no Mar, realizado no Rio de Janeiro no final de Abril, marcou um grande avanço nos planos para descarbonizar o setor marítimo do Brasil. Os organizadores, liderados pelo Almirante de Esquadra Ilques Barbosa Júnior, apresentaram uma proposta para o Plano Nacional de Transição Energética Brasileiro (BMNAP). Espera-se que o plano oriente os investimentos em tecnologia de propulsão de navios, combustíveis marítimos alternativos e infraestruturas portuárias, assim como atraia apoio político na implementação de um roteiro para a descarbonização marítima. 

A proposta está em análise e será discutida em audiência pública no Senado Federal no dia 22 de agosto. O BMNAP finalizado será apresentado ao Comitê de Proteção do Meio Ambiente Marinho da Organização Marítima Internacional (IMO), que se reunirá no final de setembro de 2024. Esta ação ajudará a solidificar o compromisso do Brasil no cenário internacional. 

Antes do seminário, o Conselho Internacional de Transporte Limpo (ICCT) publicou um documento destacando o valor de um Plano de Ação Nacional no Brasil para orientar investimentos e fomentar políticas que apoiem uma indústria marítima limpa. A publicação destacou a importância da adoção de combustíveis renováveis e da melhoria da eficiência energética da frota existente, ambos refletidos na proposta do BMNAP. O artigo também destacou o potencial de colaborações intersetoriais, incluindo aquelas com portos. 

No seminário, o secretário-geral da IMO, Arsenio Antonio Dominguez Velasco, fez referência aosinsights do estudo do ICCT sobre as emissões de gases de efeito estufa do ciclo de vida do hidrogênio no Brasil durante seu discurso de abertura. Este e outros artigos do ICCT lançaram luz sobre a necessidade de aplicar uma metodologia robusta de avaliação do ciclo de vida ao avaliar a sustentabilidade de combustíveis marítimos alternativos. Este tipo de pesquisa ajudará a fornecer uma compreensão abrangente do potencial dos biocombustíveis, porque leva em conta as emissões associadas às mudanças indiretas do uso do solo (ILUC). 

O secretário-geral da IMO, Arsenio Antonio Dominguez Velasco, fez o discurso principal e destacou a Figura 4 de um estudo publicado pelo ICCT em 2023. Foto Francielle Carvalho.

O ICCT tem conduzido diversas análises técnico-econômicas ao nível das rotas para testar a viabilidade da adoção de diferentes tecnologias de combustível e propulsão nos navios, o que pode ajudar os líderes do setor a priorizar o investimento. Na verdade, os participantes do seminário destacaram o desafio de dar prioridade ao investimento devido às incertezas que rodeiam a tecnologia dos combustíveis e a viabilidade econômica. 

Apresenta-se aqui um breve estudo de caso do graneleiro Cape Jasmine, que transporta minério de ferro. Optou-se por analisar uma extensa e importante rota marítima que vai do Porto de Açu no Brasil (AÇU) até Qingdao na China (QDG), com demandas energéticas substanciais. Ao analisar dados de movimentos de navios de 2023 do Sistema de Identificação Automática (AIS), projetamos uma hipotética viagem futura desta embarcação, que tem capacidade de carga substancial (comprimento total: 292 m; largura: 45 m; pontal: 24,8 m; calado: 18,32 m). O modelo de Avaliação Sistemática de Emissões de Embarcações (SAVE) foi utilizado para estimar as demandas de energia da rota, o que resultou em aproximadamente 15 GWh para a viagem de ida e volta, de cerca de 20.000 milhas náuticas. Isso equivale ao consumo anual de energia elétrica residencial de 19.230 habitantes do sudeste do Brasil em 2020. 

Aproveitando a metodologia que utilizamos anteriormente, a análise mostra que a utilização de hidrogênio líquido como combustível exigiria duas paradas adicionais para reabastecimento para completar a viagem (só ida). Em contraste, a amônia e o metanol poderiam alimentar a viagem de ida sem quaisquer paragens adicionais (Tabela 1). Para explorar o custo dos combustíveis alternativos, a análise baseou-se em um estudo anterior do ICCT, que comparou quantitativamente o custo dos combustíveis marítimos por várias vias. Para esclarecimento, apenas foi comparado o custo do combustível para vias que utilizam eletricidade renovável e capturam dióxido de carbono como matéria-prima. Até 2030, o custo do fornecimento de combustíveis marítimos alternativos para transportar minério de ferro entre AÇU e QDG seria semelhante para o hidrogênio renovável, a amônia renovável e o metanol renovável e, para todos, seria mais de três vezes mais elevado do que a contrapartida dos combustíveis fósseis numa base de energia equivalente. 

Tabela 1. Volume estimado e custo do combustível necessário pelo graneleiro Cabo Jasmine ao longo do corredor AÇU – QDG para uma hipotética viagem só de ida, caso sejam utilizados combustíveis marítimos alternativos 

Tipo de combustível

Volume de combustível necessário (m3)

Número de paradas para reabastecimento necessárias

Custo na bomba até 2030 ($/MJ)

Custo de combustível por viagem até 2030 (milhões de dólares)

Óleo combustível pesado

1.700

0

0,0170

0,91

Hidrogênio

12.000

2

0,0570

3,04

Amônia

5.600

0

0,0569

3,03

Metanol

4.100

0

0,0562

3,00

Observação: todos os custos estão em dólares americanos de 2021. 

Com o hidrogênio líquido, existem limitações práticas em relação ao armazenamento que exigiriam modificações no navio antes que ele pudesse ser usado como combustível principal. Além disso, embora o metanol e a amônia tenham potencial para abastecer viagens de longo curso sem a necessidade de paradas de reabastecimento mais frequentes, a sua toxicidade inerente e a necessidade de modificações significativas nos navios apresentam desafios. Tal como demonstrado no estudo de caso acima, o custo também é um desafio para todos os três tipos de combustíveis alternativos limpos. 

Um aspecto fundamental para viabilizar uma transição para a energia limpa é a sinergia em toda a indústria marítima. Isso significa colaboração entre proprietários de carga, operadores de navios, portos, fornecedores de combustível, construtores navais e outros. Com o BMNAP em fase de conclusão, o Brasil está preparado para demonstrar não apenas liderança nessa colaboração, mas também o seu compromisso com as metas internacionais de descarbonização. 

Autores

Maricruz Fun Sang Cepeda
Pesquisador Associado

Ketan Gore
Pesquisador Associado

Brazil

The post Brasil traça um caminho para um futuro marítimo limpo com um seminário fundamental appeared first on International Council on Clean Transportation.

]]>
Brazil charts a course for a clean maritime future with a pivotal seminar https://theicct.org/brazil-charts-a-course-for-a-clean-maritime-future-with-a-pivotal-seminar-aug24/ Fri, 16 Aug 2024 04:01:01 +0000 https://theicct.org/?p=46072 Presents key lessons learned from a seminar held in Brazil and analyzes a brief case study of a bulk carrier from Brazil to China.

The post Brazil charts a course for a clean maritime future with a pivotal seminar appeared first on International Council on Clean Transportation.

]]>

The Energy Transition in the Sea seminar held in Rio de Janeiro in late April marked a major step forward in plans to decarbonize Brazil’s maritime sector. The organizers, led by Ilques Barbosa Junior, an Admiral of the Fleet, presented a proposal for the Brazilian Maritime National Action Plan (BMNAP). The plan is expected to guide investments in ship propulsion technology, alternative marine fuels, and port infrastructure, and it also calls for supporting policy frameworks to implement a roadmap for maritime decarbonization.

The proposal is being reviewed and is set to be discussed during a public audience in the Federal Senate on August 22. When the BMNAP is finalized and presented to the International Maritime Organization (IMO)’s Marine Environment Protection Committee, which convenes in late September 2024, it will help solidify Brazil’s commitment on the international stage.

Before the seminar, the International Council on Clean Transportation (ICCT) published a paper highlighting the value of a National Action Plan in Brazil to guide investments and foster policies that support a clean maritime industry. It highlighted the importance of adopting renewable fuels and improving the fuel efficiency of the existing fleet, and both are well reflected in the BMNAP proposal. Our paper also highlighted the potential of cross-industry collaborations, including those with ports.

At the seminar, IMO General Secretary Arsenio Antonio Dominguez Velasco referenced insights from an ICCT study about the life-cycle greenhouse gas emissions of hydrogen in Brazil during his keynote speech. This and other papers by the ICCT have illuminated the need to apply robust life-cycle assessment methodology when assessing the sustainability of alternative marine fuels. Doing so helps provide a comprehensive understanding of the potential of biofuels because it takes account of the associated indirect land-use change (ILUC) emissions.

IMO General Secretary Arsenio Antonio Dominguez Velasco gave the keynote speech and highlighted Figure 4 from a study published by the ICCT in 2023.
Photo by Francielle Carvalho

The ICCT has been conducting various route-level techno-economic analyses to test the feasibility of adopting different fuel and propulsion technologies on ships. These can help industry leaders prioritize investment. Indeed, seminar participants highlighted the challenge of prioritizing investment due to the uncertainties surrounding fuel technology and economic viability.

Here we’ll present a brief case study of the Cape Jasmine, a bulk carrier transporting iron ore. We chose to analyze a long, vital shipping route from Porto de Açu, Brazil (AÇU) to Qingdao, China (QDG) with substantial energy demands. By analyzing satellite ship movement data from 2023, we constructed a hypothetical future voyage of this vessel, which has substantial cargo capacity (length overall: 292 m; breadth: 45 m; depth: 24.8 m; draught: 18.32 m). The Systematic Assessment of Vessel Emissions (SAVE) model was used to estimate the energy demands of the route, and that came out to approximately 15 GWh for the round trip of about 20,000 nm. That’s equivalent to the annual residential electricity power consumption of 19,230 inhabitants in southeastern Brazil in 2020.

Leveraging a methodology we’ve used before, the analysis shows that using liquid hydrogen as fuel would require two additional refueling stops to complete the voyage (one way). In contrast, ammonia and methanol could power the one-way voyage without any additional stops (Table 1). To explore the cost of the alternative fuels, we relied on a previous ICCT study that quantitatively compared the cost of marine fuels made through various pathways. To be clear, we only compared the cost of fuel for pathways that use renewable electricity and captured carbon dioxide as feedstock. By 2030, the cost of supplying alternative marine fuels to ship iron ore between AÇU and QDG would be similar for renewable hydrogen, renewable ammonia, and renewable methanol, and for all it would be more than three times higher than the fossil fuel counterpart on an energy-equivalent basis.

Table. Estimated volume and cost of fuel required by Cape Jasmine along the AÇU–QDG corridor for a hypothetical one-way voyage if using alternative marine fuels

Type of fuel

Volume of fuel required (m3)

Number of refueling stops needed

At-the-pump cost by 2030 ($/MJ)

Per-voyage cost of fuel by 2030 (million $)

Heavy fuel oil

1,700

0

0.0170

0.91

Hydrogen

12,000

2

0.0570

3.04

Ammonia

5,600

0

0.0569

3.03

Methanol

4,100

0

0.0562

3.00

Note: All costs are in 2021 U.S. dollars.

With liquid hydrogen, there are practical limitations around storage that would necessitate modifications to a ship before it could be used as the main fuel. Additionally, although methanol and ammonia have the potential to fuel long-haul voyages without the need for more frequent refueling stops, their inherent toxicity and the need for significant ship modifications present challenges. As shown in the case study above, the cost is also a challenge for all three types of renewable alternative fuels.

A key aspect of unlocking a transition to clean energy is synergy across the maritime industry. That means collaboration among cargo owners, ship operators, ports, fuel providers, shipbuilders, and others. With BMNAP nearing completion, Brazil is poised to demonstrate not only leadership in such collaboration but also its commitment to international decarbonization goals.

Authors

Maricruz Fun Sang Cepeda
Associate Researcher

Ketan Gore
Associate Researcher

Related Publications

COASTAL SHIPPING IN BRAZIL IN 2021

Highlights the principal commodities transported through cabotage in Brazil and the entities involved in this sector to explore the potential to synchronize decarbonization efforts and facilitate achieving national net-zero emissions.

Brazil

The post Brazil charts a course for a clean maritime future with a pivotal seminar appeared first on International Council on Clean Transportation.

]]>
Brasil traza el rumbo para un futuro marítimo limpio con un seminario fundamental https://theicct.org/es-brazil-charts-a-course-for-a-clean-maritime-future-with-a-pivotal-seminar-aug24/ Fri, 16 Aug 2024 04:01:01 +0000 https://theicct.org/?p=46239 Presenta las lecciones clave aprendidas en un seminario realizado en Brasil y analiza un breve estudio de caso de un granelero de Brasil a China.

The post Brasil traza el rumbo para un futuro marítimo limpio con un seminario fundamental appeared first on International Council on Clean Transportation.

]]>

El seminario Transición Energética en el Mar celebrado en Río de Janeiro a finales de Abril marcó un avance importante en los planes para descarbonizar el sector marítimo de Brasil. Los organizadores, encabezados por Ilques Barbosa Junior, Almirante de Escuadra, presentaron una propuesta para el Plan Nacional Marítimo de Transición Energética de Brasil (BMNAP). Se espera que el plan oriente las inversiones en tecnología de propulsión de buques, combustibles marinos alternativos e infraestructura portuaria, y también exige marcos de políticas de apoyo para implementar una hoja de ruta para la descarbonización marítima.

La propuesta está bajo revisión y será discutida durante una audiencia pública en el Senado Federal el 22 de agosto. El BMNAP finalizado será presentado al Comité de Protección del Medio Marino de la Organización Marítima Internacional (OMI), que se reunirá a finales de septiembre de 2024, y ayudará a solidificar el compromiso de Brasil en el escenario internacional.

Antes del seminario, el Consejo Internacional de Transporte Limpio (ICCT) publicó un documento destacando el valor de un Plan de Acción Nacional en Brasil para orientar inversiones y fomentar políticas que apoyen una industria marítima limpia. Destacó la importancia de adoptar combustibles renovables y mejorar la eficiencia de combustible de la flota existente, y ambos aspectos están bien reflejados en la propuesta del BMNAP. Nuestro documento también destacó el potencial de las colaboraciones entre industrias, incluidas aquellas con puertos.

En el seminario, el Secretario General de la OMI, Arsenio Antonio Domínguez Velasco, hizo referencia a los resultados del estudio del ICCT sobre el ciclo de vida de las emisiones de gases de efecto invernadero del hidrógeno en Brasil durante su discurso de apertura. Este y otros artículos del ICCT han iluminado la necesidad de aplicar una metodología sólida del análisis del ciclo de vida al evaluar la sostenibilidad de los combustibles marinos alternativos. De esta manera, se puede proporcionar una comprensión integral del potencial de los biocombustibles porque se tienen en cuenta las emisiones asociadas al cambio indirecto del uso de la tierra (ILUC).

El Secretario General de la OMI, Arsenio Antonio Domínguez Velasco, pronunció el discurso de apertura y destacó la Figura 4 de un estudio publicado por el ICCT en 2023.  Foto de Francielle Carvalho

El ICCT ha estado realizando varios análisis tecnoeconómicos a nivel de ruta para probar la viabilidad de adoptar diferentes tecnologías de combustible y propulsión en los barcos. Estos estudios pueden ayudar a los líderes de la industria a priorizar la inversión. De hecho, los participantes del seminario destacaron el desafío de priorizar la inversión debido a las incertidumbres que rodean la tecnología de los combustibles y la viabilidad económica.

Aquí presentamos un breve estudio de caso del Cape Jasmine, un granelero que transporta mineral de hierro. Elegimos analizar una ruta marítima larga y vital desde el Puerto de Açu en Brasil (AÇU) hasta Qingdao en China (QDG) con demandas energéticas significativas. Al analizar los datos de 2023 del sistema de identificación automática (AIS), construimos un hipotético viaje futuro de este barco, que tiene una capacidad de carga sustancial (eslora total: 292 m; manga: 45 m; puntal: 24,8 m; calado: 18,32 m). Se utilizó el modelo de Evaluación Sistemática de Emisiones de Buques (SAVE) para estimar las demandas de energía de la ruta, que resultó en aproximadamente 15 GWh para el viaje de ida y vuelta de aproximadamente 20.000 millas náuticas. Esto equivale al consumo anual de energía eléctrica residencial de 19.230 habitantes en el sureste de Brasil en 2020.

Aprovechando una metodología que hemos utilizado anteriormente, el análisis muestra que el uso de hidrógeno líquido como combustible requeriría dos paradas adicionales para reabastecer de combustible para completar el viaje (solo de ida). Por el contrario, el amoníaco y el metanol podrían abastecer el viaje de ida sin paradas adicionales (Tabla 1). Para explorar el costo de los combustibles alternativos, nos basamos en un estudio anterior del ICCT que comparó cuantitativamente el costo de los combustibles marinos por varias vías. Para ser claros, solo comparamos el costo del combustible para las vías que utilizan electricidad renovable y capturan dióxido de carbono como materia prima. Para 2030, el costo de suministrar combustibles marinos alternativos para transportar mineral de hierro entre AÇU y QDG sería similar para el hidrógeno renovable, el amoníaco y el metanol renovables, y en total sería más de tres veces mayor que el costo de los combustibles fósiles en términos de energía equivalente.

Tabla 1. Volumen estimado y costo de combustible requerido por Cape Jasmine a lo largo del corredor AÇU-QDG para un viaje hipotético de ida si se utilizan combustibles marinos alternativos

Tipo de combustible

Volumen de combustible requerido (m3)

Número de paradas necesarias para repostar combustible

Costo en el surtidor para 2030 ($/MJ)

Costo del combustible por viaje para 2030 (millones de dólares)

Fueloil pesado

1.700

0

0,0170

0,91

Hidrógeno

12.000

2

0,0570

3,04

Amoníaco

5.600

0

0,0569

3,03

Metanol

4.100

0

0,0562

3,00

Nota: Todos los costos están en dólares estadounidenses de 2021.

Con el hidrógeno líquido, existen limitaciones prácticas en torno al almacenamiento que requerirían modificaciones en el barco antes de que pueda usarse como combustible principal. Además, aunque el metanol y el amoníaco tienen el potencial de alimentar viajes de larga distancia sin la necesidad de paradas más frecuentes para repostar combustible, su toxicidad inherente y la necesidad de modificaciones significativas en los barcos presentan desafíos. Como se muestra en el estudio de caso anterior, el costo también es un desafío para los tres tipos de combustibles alternativos renovables.

Un aspecto clave para desbloquear una transición hacia la energía limpia es la sinergia en toda la industria marítima. Eso significa colaboración entre propietarios de carga, operadores de buques, puertos, proveedores de combustible, constructores navales y otros. Con el BMNAP a punto de finalizar, Brasil está preparado para demostrar no sólo liderazgo en dicha colaboración sino también su compromiso con los objetivos internacionales de descarbonización.

Autores


Maricruz Fun Sang Cepeda
Investigadora Asociada

Ketan Gore
Investigador Asociado

Brazil

The post Brasil traza el rumbo para un futuro marítimo limpio con un seminario fundamental appeared first on International Council on Clean Transportation.

]]>
Green shipping corridors: Screening first mover candidates for China’s coastal shipping based on energy use and technological feasibility https://theicct.org/publication/green-shipping-corridors-for-chinas-coastal-shipping-aug24/ Fri, 09 Aug 2024 14:10:14 +0000 https://theicct.org/?post_type=publication&p=44970 This study investigates the potential for green shipping corridors (GSCs) in China’s coastal shipping area, using hydrogen, methanol, ammonia, and batteries.

The post Green shipping corridors: Screening first mover candidates for China’s coastal shipping based on energy use and technological feasibility appeared first on International Council on Clean Transportation.

]]>
Greenhouse gas emissions from the maritime sector are rising, conflicting with the climate goals of the Paris Agreement. This sector has struggled to transition to zero or near-zero emission fuels due to regulatory and financial barriers. To address these challenges, the concept of green shipping corridors (GSCs) has emerged, aiming to overcome financial obstacles and accelerate innovation in decarbonization technology.

This study investigates the feasibility of establishing GSCs for China’s coastal shipping. Researchers assess whether the ships could be powered by renewable hydrogen, methanol, ammonia, or batteries without the need to refuel en route. Three routes were identified as potential first mover candidates for GSCs. Finally, to understand the cost of enabling these routes, researchers analyzed demand and cost of renewable marine fuels for the first zero-emission vessels to be deployed on these routes (Table ES).

Figure. Traffic patterns for the three hypothetical zero-emission vessels on the GSC routes

 

Key findings:

  • The technological feasibility of applying renewable marine fuels on China’s coastal shipping routes is high. The three first mover GSC routes analyzed could be served by ships running on renewable hydrogen, ammonia, and methanol without a need to refuel en route. Battery electric technology could be used for certain ships on shorter regional routes but currently has the lowest feasibility.   
  • To enable the first ZEVs on these routes, 6,000 tonnes of ammonia or methanol, or 900 tonnes of renewable hydrogen need to be sourced. This would likely result in the need to supply 44-60 GWh of renewable electricity by 2030.  
  • Policy guidelines are crucial for deploying more ZEVs in these corridors and achieving a meaningful reduction in greenhouse gases. The estimated cost of renewable hydrogen at the pump is $7.60/kg by 2030, significantly higher than conventional marine fuels. Reducing costs by 32% by 2050 will require substantial policy support to make GSCs viable on a larger scale.  

Table. Hypothetical activity for one zero-emission vessel on each GSC route, based on 2021 activity data

The post Green shipping corridors: Screening first mover candidates for China’s coastal shipping based on energy use and technological feasibility appeared first on International Council on Clean Transportation.

]]>
How U.S. ports can partner with the ICCT to leverage federal funding for electrification https://theicct.org/how-us-ports-can-partner-with-the-icct-to-leverage-federal-funding-for-electrification-june24/ Fri, 28 Jun 2024 11:22:22 +0000 https://theicct.org/?p=44447 With technical assistance from the ICCT, ports can conduct inventories of emissions and estimate the benefits of electrification.

The post How U.S. ports can partner with the ICCT to leverage federal funding for electrification appeared first on International Council on Clean Transportation.

]]>

A recent report from the U.S. Environmental Protection Agency (EPA) found that most U.S. ports lack an air quality monitoring program, and even fewer have emission inventories. Although ports would benefit from both, and EPA has some helpful guidance on conducting emission inventories, these types of analyses require specialized skills and resources, including equipment and expertise.

This is where we come in. With technical assistance from the ICCT, ports can identify high-emitting equipment and estimate the benefits of electrification. Let’s walk through how we work using a recent example.

The ICCT partnered with the Port of Coeymans, a small, privately owned marine terminal on the Hudson River near Albany, New York. Its fleet consists of nine diesel-powered tugs and more than 40 barges. The Port, which is under the umbrella of Carver Companies, has capacity for heavy haul transport of large components, modularization of power plants and bridges, marine construction, disaster recovery projects, and has recently pivoted toward supporting offshore wind projects. Carver Companies is equipped to build and repair ships on-site, including electric tugboats. We estimated the emission reductions and health benefits of converting to an all-battery-electric tug fleet.

The port sent us the specifications of the nine tugs and officials estimated that they burned roughly 120,000 gallons of 500 ppm sulfur marine diesel fuel annually. Using our global online Port Emissions Inventory Tool (goPEIT), we estimated the annual carbon dioxide (CO2) and air pollutant emissions from tug operations. We then used InMAP to estimate the reduction in local air pollution and the health benefits associated with the switch to battery electric tugs. Lastly, we calculated the monetized health benefits of the switch using EPA’s value of a statistical life.

Our estimates show that the nine tugs at the Port of Coeymans emitted around 1,200 MT of CO2, 20 MT of nitrogen oxides (NOx), 380 kg of sulfur oxides (SOx), and 320 kg of fine particulate matter (PM2.5) annually. If all nine tugs were battery electric, these emissions would be eliminated and annual average local PM2.5 air pollution concentrations in and around the port would be reduced by up to 0.043 µg/m3 (Figure 1). This would be a 1.1% reduction in PM2.5, based on the real-world PM2.5 background concentrations reported here. The 30-day average when we completed the analysis in March/April 2024 was 3.8 µg/m3. 

Figure 1. The reduced annual average PM2.5 concentration (μg/m3) from a fully electric tug fleet at the Port of Coeymans.

The reduction in PM2.5 would result in monetized health benefits of approximately $278,000 per year based on the 2022 mean U.S. value of a statistical life. One air-pollution-related premature death in the surrounding community would be avoided every 41 years; this might not sound like much, but this is the impact of one single action at a small port in a town with a population of approximately 7,250. Monetized health benefits of avoided morbidity (non-fatal health effects) are not quantified by InMAP, but global estimates of the economic impacts of air pollution suggest that morbidity cost is roughly 10% of mortality cost. Thus, in this case, including avoided morbidity in our estimate could increase the monetized health benefits to more than $300,000 annually.

The Port of Coeymans included our analysis in applications for federal funding, and similar analyses can be done for other ports, including those with larger fleets, more equipment types, and higher nearby population density. Ports around the country are increasingly interested in electrification as it can reduce pollution, improve public health, and help decarbonize the U.S. freight transportation system. But of course, this requires investment. Fortunately, recent legislation, including the Bipartisan Infrastructure Law (BIL) of 2021 and the Inflation Reduction Act (IRA) of 2022, have made available more than $5 billion to support efforts to reduce pollution at U.S. ports.

EPA’s Clean Ports Program (CPP) was funded through the IRA and made $3 billion available, $750 million of which was for ports in areas that do not meet the EPA National Ambient Air Quality Standards. This was a one-time funding opportunity and applications closed in late May, but ports can still apply for funding through the U.S. Maritime Administration’s Port Infrastructure Development Program (PIDP). The PIDP is a discretionary grant program aimed at improving the movement of goods at ports and implementing emissions-mitigation measures. It was awarded $2.25 billion from 2022 to 2026 through the BIL and a quarter of this is designated for projects at small ports.

A larger network of ports in the United States with air quality monitoring programs would make it easier to identify key areas where federal funding can most effectively be distributed. Strategic installation of port electrification technology can improve the air quality for near-port communities, many of which are lower-income and have historically been affected by poor air quality from port activity.

An upcoming ICCT report will estimate the CO2, NOx, SOx, and PM emissions from at-berth vessels at 191 ports across the United States. As far as we’re aware, it’s the first high-level national port emissions inventory of its kind. Using novel criteria, we identified seven ports with high at-berth vessel emissions near a large population that could benefit significantly from installing shore power or other vessel-side electrification technologies.

Our work is ongoing. No matter how big or small the port or the surrounding population, more ports should consider implementing an air quality monitoring program and conducting an emissions inventory. We encourage port officials who are interested in learning more about collaborating with the ICCT on an analysis like the one with the Port of Coeymans to contact us through our website.

Authors

Tom Decker
Associate Researcher

Zhihang Meng
Researcher

Bryan Comer
Director of Marine Program

Related Publications

ELECTRIFYING PORTS TO REDUCE DIESEL POLLUTION FROM SHIPS AND TRUCKS AND BENEFIT PUBLIC HEALTH:
CASE STUDIES OF THE PORT OF SEATTLE AND THE PORT OF NEW YORK AND NEW JERSEY

Combines user-friendly, reduced-complexity tools to estimate the emissions reduction potential and health benefits of electrifying ocean-going vessels, harbor craft, and drayage trucks at two of the United States’ busiest ports.

Emissions modeling

The post How U.S. ports can partner with the ICCT to leverage federal funding for electrification appeared first on International Council on Clean Transportation.

]]>
From concept to impact: Evaluating the potential for emissions reduction in the proposed North Atlantic Emission Control Area under different compliance scenarios https://theicct.org/publication/evaluating-the-potential-for-emissions-reduction-in-the-proposed-atleca-under-different-compliance-scenarios-june24/ Wed, 12 Jun 2024 22:45:11 +0000 https://theicct.org/?post_type=publication&p=42207 Assesses the potential emissions reduction from designating the North Atlantic Emission Control Area (AtlECA). The proposed AtlECA would place stricter regulations on ships aimed at reducing SOx, NOx, and PM emissions.

The post From concept to impact: Evaluating the potential for emissions reduction in the proposed North Atlantic Emission Control Area under different compliance scenarios appeared first on International Council on Clean Transportation.

]]>
This study assesses the potential for reducing emissions from ships in the North Atlantic Ocean by designating the region an Emission Control Area. The North Atlantic Emission Control Area (AtlECA) would impose stricter regulations aimed at reducing emissions of sulfur oxides (SOx), fine particulate matter (PM2.5), and nitrogen oxides (NOx).  

The possible AtlECA includes the territorial seas and exclusive economic zones of Spain, Portugal, France, the United Kingdom, Ireland, Iceland, the Faroe Islands, and Greenland, with potential expansion to include the Azores and Madeira archipelagos of Portugal and the Canary Islands of Spain. The results of this study are intended to be a part of a submission to the International Maritime Organization’s Marine Environment Protection Committee on designating the AtlECA, following the International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI requirements. 

We estimate that the AtlECA designation could lead to significant emission reductions in pollutants. In 2030, if distillate fuel is used to comply with the ECA regulations, this could lead to an 82% reduction in SOx emissions, a 64% reduction in PM2.5, and a 36% reduction in black carbon (BC) emissions when compared to a scenario without ECA regulations. NOx regulation Tier III standards can reduce expected NOx emissions by about 3% if they apply only to ships built in 2027 or later. Up to 71% NOx reductions could be achieved by applying Tier III standards to engines on all ships.  

Additionally, we project that if the outermost regions of Portugal and Spain join the AtlECA, air pollution near these islands could be significantly reduced. The projected reductions include 84% in SOx, 67% in PM2.5, and 41% in BC emissions if distillate is used as the compliance fuel.  

Based on this analysis, we suggest the Atlantic ECA member states consider the following recommendations: 

  • Include the full exclusive economic zones of Spain, Portugal, France, the United Kingdom, Ireland, Iceland, Faroe Islands, and Greenland in the geographic scope of the AtlECA. This would strategically connect the surrounding established or proposed ECAs, creating the largest low-emission shipping zone in the world.  
  • Consider including the outermost regions of Portugal (Azores and Madeira) and Spain (Canary Islands) in the geographic scope of the AtlECA. Our analysis shows that 94% of the traffic crossing these islands is already shipping in other existing or proposed Emission Control Areas.  
  • Incentivize the use of distillates over ultra-low sulfur fuel oil (ULSFO) or scrubbers for ECA compliance in the national waters of AtlECA member states.  
  • Consider restricting the use of scrubbers in the national waters and ports of AtlECA member states to reduce BC and PM and to avoid scrubber discharges.  
  • Consider supporting Norway’s suggestion to amend MARPOL to use the “three dates criteria” for the designation of newly built ships subject to Tier III NOx emission standards. 

The post From concept to impact: Evaluating the potential for emissions reduction in the proposed North Atlantic Emission Control Area under different compliance scenarios appeared first on International Council on Clean Transportation.

]]>
India’s plan to expand shore power infrastructure at major ports https://theicct.org/indias-plan-to-expand-shore-power-infrastructure-at-major-ports-june24/ Mon, 03 Jun 2024 00:30:39 +0000 https://theicct.org/?p=42800 In Harit Sagar Green Port Guidelines, among the land-based initiatives are electrification of port vehicles and cargo-handling machinery and phased adoption of alternative fuels by trucks that transport cargo. To reduce sea-based emissions, Harit Sagar endorsed the use of shore power and cleaner alternative fuels to operate port crafts.

The post India’s plan to expand shore power infrastructure at major ports appeared first on International Council on Clean Transportation.

]]>

Along its 7,500 km of coastline, India has 12 ports designated as major ports (owned by the national government) and 217 non-major ports (owned by the respective state governments). Nearly 70% of air the pollution at major ports is from ships at berth or at anchor. The average time spent by ships while berthing at major Indian ports was 2.25 days in FY 2021–22, more than twice the average globally, 1.05 days in 2021.

The maritime sector is crucial for India. It carries 95% of the country’s trade volume and 65% of its trade value. Because of this, and as projections suggest a fivefold increase in seaborne tonnage by 2047, ports have been earmarked to play one of the leading roles in India’s decarbonization efforts.

Last spring, the Ministry of Ports, Shipping, and Waterways (MoPSW) released the Harit Sagar” Green Port Guidelines, which detail a range of decarbonization initiatives at major ports. Among the land-based initiatives are electrification of port vehicles and cargo-handling machinery and phased adoption of alternative fuels by trucks that transport cargo. To reduce sea-based emissions, Harit Sagar (which is green ocean in Hindi) endorsed the use of shore power and cleaner alternative fuels to operate port crafts.

While the Harit Sagar initiatives are not legally binding, ports can earn carbon credits for use in a proposed carbon credit trading scheme. The environmental performance of the major ports will be evaluated by the MoPSW annually based on set near-term—30% by 2030—and long-term—70% by 2047—targets for reducing carbon intensity in terms of carbon dioxide (CO2) emissions per ton of cargo. These targets were established with FY 2022–23 as the baseline year, and major ports were tasked with preparing the requisite greenhouse gas emissions inventory in conjunction with an expert agency.

The adoption of cleaner alternatives for port vehicles, port crafts, and trucks is still at a nascent stage, but progress has been made in shore-to-ship power supply. Harit Sagar envisions the rollout of shore power in three phases:

  • Phase 1, by 2023, port crafts (tugs, pilot boats, and survey and mooring boats)
  • Phase 2,  by 2024, Coast Guard/Navy and India-flagged coastal vessels
  • Phase 3, by 2025, export/import foreign-flagged cargo vessels

By the end of April 2024, all major ports in India had developed adequate infrastructure for shore power supply to port crafts (Figure 1). Additionally, some ports—Mormugao, New Mangalore, Chennai, and Paradip—also had the infrastructure to supply to Indian Navy/Coast Guard vessels. Note that ships are not yet mandated to use the available grid power. This contrasts with the European Union, where certain types like container ships and passenger ships (including cruise) will be mandated to do so by 2030 via the FuelEU directive. While ships at Indian ports are only likely to switch to shore power if it’s financially beneficial, the MoPSW has raised the possibly of introducing incentives in the future such as queue priority and rebates on berth dues for vessels that have shore power receptors installed.

Figure 1. Major ports in India with shore power facilities
Sources: MoPSW (2020), Rajya Sabha (2021), and MoPSW (2023)

Shore power technology not only helps to minimize the climate impact of port operations, it also brings public health benefits by reducing the use of bunker fuels. An ICCT study estimated the air quality and health benefits of shore power in two port cities in the United States using our global online Port Emissions Inventory Tool (goPEIT). For the Port of Seattle, shore power for ocean-going vessels and harbor craft was expected to reduce direct CO2, nitrogen oxides (NOx), and particulate matter (PM2.5) emissions from those vessels by 68%, 85%, and 75%, respectively. (Remaining emissions were because ships still use fuel in the port while entering, departing, and manoeuvring.) Using shore power was estimated to reduce the average PM2.5 concentrations near the port by up to 83%, which would result in an estimated $27 million in public health benefits annually.

For the Port of New York/New Jersey, connecting ocean-going vessels and harbor craft to shore power and electrifying drayage trucks was estimated to reduce direct CO2, NOx, and PM2.5 emissions from those sources by 64%, 66%, and 68%, respectively. The average PM2.5 concentration levels in the port’s vicinity would be expected to fall by up to 65%, and that would translate to an estimated $150 million in public health benefits per year. Given that the population density of major Indian port cities (e.g., Mumbai, 73,000/mi2 and Kolkata, 63,000/mi2) is far greater than that of New York (26,931/mi2) and Seattle (9,357/mi2), the public health benefits associated with shore power deployment could be higher in India.

The extent of the life-cycle reduction in ship emissions that result from use of shore power in India will be primarily dependent on the composition of the electricity grid. As of FY 2023–24, nearly 76% of grid power is generated from fossil fuel sources (primarily coal, with gas and oil); the remainder comes from renewable sources (wind, solar, hydro, and biomass) and nuclear energy. At present, India’s grid emission factor for CO2 stands at about 710 g/kWh, slightly higher than ship auxiliary engines operating on low-sulfur fuel oil (approximately 690 g CO2/kWh). However, it’s projected that with increasing use of renewable sources for power generation, India’s grid emission factor could be reduced to 548 g CO2/kWh by FY 2026–27 and 430 g CO2/kWh by FY 2030–31. Thus, while the overall carbon intensity of shore power use will be higher than that of burning marine fuel in the short term, the anticipated drop in the grid emission factor will make using shore power an increasingly attractive emissions-reduction option by later in this decade.

Because all major ports are in the exploration phase of deploying shore power technology, conducting a formal emissions inventory using tools like the ICCT’s goPEIT can be useful in supporting detailed recommendations about how to prioritize installations. Such an inventory would also allow decision-makers to identify, quantify, and compare other sources of port-based emissions and help port operators devise a plan for reducing and eliminating emissions from these sources in line with the Harit Sagar targets.

The ICCT’s goPEIT is free to use. Researchers and port representatives can obtain a username and password by clicking on “Request an account.” Additionally, the ICCT can help ports to evaluate the costs and benefits of different alternative fuel technology options and design transition pathways in line with India’s economy-wide decarbonization targets. We encourage those interested in establishing baseline emissions inventories for Indian ports and analyzing the cost-effectiveness of alternative fuel options to get in touch with us.

Authors

Ketan Gore
Fellow

Bryan Comer
Director of Marine Program

Related Publications

ELECTRIFYING PORTS TO REDUCE DIESEL POLLUTION FROM SHIPS AND TRUCKS AND BENEFIT PUBLIC HEALTH: CASE STUDIES OF THE PORT OF SEATTLE AND THE PORT OF NEW YORK AND NEW JERSEY

Analyzes the potential of a tax on individuals who fly often to raise revenue for the decarbonization of aviation.

The post India’s plan to expand shore power infrastructure at major ports appeared first on International Council on Clean Transportation.

]]>
Cabotagem no Brasil em 2021 https://theicct.org/publication/cabotagem-no-brasil-em-2021-mar24/ Wed, 27 Mar 2024 04:18:12 +0000 https://theicct.org/?post_type=publication&p=39948 Destaca as principais commodities transportadas por cabotagem no Brasil e as entidades envolvidas no setor para explorar o potencial de sincronizar esforços de descarbonização e facilitar a realização das emissões líquidas zero nacionais.

The post Cabotagem no Brasil em 2021 appeared first on International Council on Clean Transportation.

]]>

Como muitos países, o Brasil restringe a navegação entre portos domésticos à entidades nacionais. Apenas empresas brasileiras de navegação (EBNs) podem se envolver na cabotagem.1 Em meados de 2023, a Agência Nacional de Transportes Aquaviários (ANTAQ) contabilizou 49 empresas registradas como EBNs que operavam navios na cabotagem.2 Aqui destacamos aspectos do mercado em 2021, quando os registros informam que havia 185 navios na frota de cabotagem do Brasil; estes eram principalmente barcaças, manuseadores de espias (embarcações que operam no descarregamento do petróleo das instalações de produção e armazenamento para os navios petroleiros e destes para as monoboias), porta-contêineres e navios-tanque. Cerca de 60% da capacidade total de transporte estava associada à indústria de petróleo e gás. Para todos os segmentos, algumas empresas detinham a maior parte da frota e das operações.

1Lei nº 9.432, de 8 de janeiro de 1997, https://www.planalto.gov.br/ccivil_03/leis/l9432.htm.

2 Ver detalhes das fontes de dados no final deste documento.

.

Tonelagem de 2011 a 2021

Os granéis líquidos e gasosos representaram cerca de 77% da tonelagem total de cabotagem no Brasil entre 2011 e 2021, ao passo que os granéis sólidos totalizaram cerca de 12% da tonelagem, a carga conteinerizada, 7%, e a carga geral, 3%. Nesse período, a tonelagem de granéis líquidos e gasosos cresceu 53%; a tonelagem de granéis sólidos, 7%; e a tonelagem de carga geral, 10%. A tonelagem de carga conteinerizada foi a que mais aumentou, 230%.

Granéis líquidos e gasosos

Do total de granéis líquidos e gasosos transportados, 98,6% eram combustíveis minerais, óleos minerais e produtos de sua destilação. O restante eram produtos químicos orgânicos (0,6%), produtos químicos e substâncias inorgânicos (0,4%), e bebidas, licores e vinagre (0,2%). A maior parte provinha de plataformas offshore de extração de petróleo na Zona Econômica Exclusiva (ZEE) brasileira, e os principais destinos eram os estados de Rio de Janeiro e São Paulo, na Região Sudeste, que abrigam grandes refinarias de petróleo.3 Dez EBNs possuíam navios para transporte de granéis líquidos e gasosos, sendo que a Petrobras Transporte S.A.—Transpetro detinha 68% da frota (26 navios) e 93% da capacidade total de transporte nesse segmento. A Empresa de Navegação Elcano S.A. detinha 16% da frota (seis navios) e 3% da capacidade total, enquanto a Flumar Transportes de Químicos e Gases Ltda. detinha 5% da frota (dois navios) e 3% da capacidade total. Outras empresas tinham menos de 1%.

3 Empresa de Pesquisa Energética, Balanço Energético Nacional 2022: Ano Base 2021 [Brazilian Energy Balance 2022: Year 2021] (Rio de Janeiro, 2022), https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/topico-638/BEN2022.pdf.

Granéis sólidos

A cabotagem de granéis sólidos, fortemente ligada ao setor da mineração, teve como principais produtos minérios (91% do total de toneladas transportadas), sal (6%) e combustíveis minerais sólidos (1%). O transporte de granéis sólidos por cabotagem está concentrado no norte do Brasil, carregando principalmente bauxita, o terceiro recurso natural mais abundante no país.

Quatro empresas atuavam na cabotagem de granéis sólidos: a Elcano S.A detinha 50% da frota (quatro navios) e 56% da capacidade total de transporte; a Lyra Navegação Marítima detinha 25% da frota (dois navios) e 10% da capacidade de transporte; a Hidrovias do Brasil detinha 13% da frota (um navio) e 23% da capacidade total de transporte; e a Norsul detinha 13% da frota (um navio) e 10% da capacidade de transporte. Como o transporte de bauxita é baseado em contratos de longo prazo e em uma frota específica, há pouca concorrência para as EBNs que operam nesse mercado.

Carga conteinerizada

Três EBNs, cada uma com seis navios registrados, atuavam nesse segmento e colaboravam para oferecer múltiplos serviços: Aliança Navegação e Logística, Log-In Logística Intermodal e Mercosul Line. A Aliança detinha 44% da capacidade de transporte, seguida pela Log-In (30%) e pela Mercosul Line (26%). Todas são subsidiárias de corporações internacionais. A Mediterranean Shipping Company (MSC) detém participação majoritária na Log-in Logística Intermodal, a Aliança faz parte da AP Moller – Maersk, e a Mercosul Line integra o Grupo CMA CGM. Essas EBNs oferecem operações feeder que transferem cargas estrangeiras para importação ou exportação, parte importante dos serviços de cabotagem. Seis produtos representaram 51% do total de toneladas de carga conteinerizada relacionada à cabotagem; somados a outros 14 produtos, eles representaram 80% do total. O transporte de cargas conteinerizadas está mais distribuído pelo Brasil que o dos demais tipos de carga. Os principais pontos de origem e destino estão em todas as regiões ao longo da costa.

Carga geral

Desde 2011, a participação da carga geral na tonelagem total de cabotagem no Brasil vem diminuindo constantemente. Dois itens representam mais de 90% da cabotagem de carga geral: produtos siderúrgicos (70%) e celulose (22%), principal matéria-prima para a fabricação de papel. Produtos florestais, como madeira e carvão, são o terceiro item mais comum, mas representam apenas 3% do total de toneladas transportadas. Sete navios (de um total de dez) e duas EBNs responderam por 99% da capacidade de transporte: a Tranship Tranportes Marítimos Ltda. detinha cinco navios e 24% da capacidade de transporte, enquanto a Norsul possuía dois navios e 75% da capacidade de transporte. As principais origens e destinos da cabotagem de carga geral estão associadas a produtos siderúrgicos transportados do Espírito Santo (Região Sudeste) para Santa Catarina (Região Sul); produtos florestais e celulose transportados da Bahia (Nordeste) para o Espírito Santo (Sudeste); e produtos siderúrgicos do Ceará (Nordeste) para São Paulo (Sudeste).

Investimento em descarbonização

O programa BR do Mar, incorporado na Lei nº 14.301/2022, atualizou a legislação para aumentar a oferta e qualidade dos serviços de cabotagem no Brasil bem como promover a competitividade das EBNs, especialmente no segmento de cargas conteinerizadas.4 Além disso, a empresa que possui e opera a maior parte das embarcações em atuação na cabotagem no Brasil, a Transpetro, pretende reduzir em 11% as emissões de seus navios e investir R$ 64 milhões em esforços de descarbonização até 2027.5 Entre seus projetos planejados, a empresa lista revestimentos de alta tecnologia no casco dos navios para prevenir incrustações por organismos marinhos (reduzindo assim o consumo de combustível e as emissões de gases de efeito estufa); o emprego de algoritmos avançados para identificar as rotas de navegação mais eficientes; a otimização da combustão do motor principal; e o uso de misturas de biocombustíveis.6 Ademais, as principais companhias internacionais de transporte de contêineres que controlam ou possuem empresas em operação na cabotagem no Brasil divulgaram metas de sustentabilidade. Esses objetivos incluem a descarbonização de suas cadeias de abastecimento globais. A Tabela 1 exibe as metas de descarbonização divulgadas pelas empresas.

Tabela 1. Metas de descarbonização das principais empresas internacionais de transporte de contêineres e suas subsidiárias brasileiras.

Corporação internacional

EBN subsidiária

Metas de descarbonização relacionadas ao transporte marítimo internacional

Mediterranean Shipping Company (MSC)

Log-In

• Atuar ao longo da cadeia de valor da MSC para promover os investimentos necessários ao alcance da neutralidade de carbono em todas as operações, desenvolver soluções de apoio logístico e focar na eficiência energética. 

•Trabalhar com as partes interessadas para promover o uso de combustíveis alternativos, incluindo a infraestrutura e os sistemas de distribuição necessários.

AP Moller – Maersk

Aliança

Meta de descarbonização para 2030 em conformidade com a estratégia de 1,5º C da Science Based Targets Initiative (SBTi) para obter reduções absolutas de emissões entre 35% e 50% a partir da linha de base de 2020. 

•Meta de atingir a neutralidade de carbono até 2040 em todos os âmbitos e negócios.

Grupo CMA CGM

Mercosul Line

• Em seu relatório de Responsabilidade Social Empresarial de 2022, a empresa afirmou o objetivo de alcançar a neutralidade climática para a Mercosul Line até 2050, tendo pelo menos 10% de combustíveis alternativos em sua matriz energética até 2023 e atingindo 100% de eletricidade renovável em armazéns logísticos até 2025. 

•Buscar iniciativas que incluam usar combustíveis alternativos em navios e projetar embarcações com maior eficiência energética.

Como a frota de cabotagem do Brasil transporta principalmente materiais para a indústria de petróleo e gás, as estratégias para descarbonizar o transporte marítimo nacional exigirão a participação e o apoio desse setor. Uma análise recente mostrou que navios de abastecimento e porta-contêineres são as classes de embarcações responsáveis pela maior parte das emissões na ZEE brasileira.7 Ademais, o envolvimento das empresas que operam no segmento de navios de abastecimento e porta-contêineres será crucial para a implementação de medidas nacionais de descarbonização.

4 Lei nº 14.301, de 7 de janeiro de 2022, https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/lei/l14301.htm.
5 Transpetro, “Transpetro investe em Eficiência Energética e Descarbonização da sua Frota,” news release, 23 ago. 2023, https://transpetro.com.br/transpetro-institucional/noticias/transpetro-investe-em-eficiencia-energetica-e-descarbonizacao-da-sua-frota.htm.
6 Transpetro, Relatório de sustentabilidade 2022, https://sustentabilidade.petrobras.com.br.
7 Francielle Carvalho, Recommendations to Develop a Brazilian Maritime National Action Plan (Washington, DC: International Council on Clean Transportation, 2023), https://theicct.org/publication/recommendation-to-develop-a-brazilian-maritime-national-action-plan-aug23/.

Data sources and methodology

As informações apresentadas nas figuras foram obtidas nos bancos de dados da ANTAQ. Essa agência é responsável por regular, supervisionar e fiscalizar as atividades de prestação de serviços de transporte aquaviário e de exploração da infraestrutura portuária e aquaviária. Duas bases de dados da ANTAQ foram consultadas em abril e maio de 2023: Estatístico Aquaviário e Navegação Marítima – Frota Geral – Analítica.

Os sites das empresas de navegação também foram consultados, mas, quando houve divergência entre as bases de dados da ANTAQ e os relatórios das empresas, priorizaram-se os dados da ANTAQ. Por exemplo, existem diferenças entre os dados da frota de porta-contêineres nas bases da ANTAQ e as informações fornecidas pelas três EBNs em seus websites. Para a frota de carga geral, também identificamos diferenças entre os dados da ANTAQ e os das empresas. A base da ANTAQ contém informações sobre embarcações de carga geral que se misturam com barcaças que podem não estar operando no setor de carga geral. Por exemplo, embora a frota da Tranship esteja incluída na base de dados de carga geral da ANTAQ, a empresa atua mais no setor de petróleo e gás com barcaças de convés aberto.8 Os dados da ANTAQ indicam que as empresas do segmento de carga geral operam com barcaças de convés aberto destinadas ao transporte de cargas especiais e não de carga geral; algumas dessas barcaças estão associadas à indústria de petróleo e gás. O site da Norsul informa que a empresa atua no segmento de carga geral com uma frota de barcaças e rebocadores destinados ao transporte de celulose e produtos siderúrgicos.9 Assim, para assegurar a consistência com os demais segmentos de transporte de cabotagem apresentados nesta análise, todos os dados apresentados nas figuras foram obtidos na base da ANTAQ.

A propriedade das EBNs foi obtida das seguintes fontes:

  • Michele Labrut, “Log-In Logistica Accept MSC Takeover Offer,” Seatrade Maritime News, 23 dez. 2021, https://www.seatrade-maritime.com/ containers/log-logistica-accept-msc-takeover-offer.
  • “Aliança—A Maersk Company,” acesso em jun. 2023, https://www.alianca.com.br/a-alianca.
  • “Especialistas em Cabotagem e Logística,” Mercosul Line, acesso em jun. 2023, https://www.mercosul-line.com.br/.

 

8 “Frota,” Tranship, acesso em abr. 2023, http://www.tstranship.com.br/frota.html

9 “Navegação – Cabotagem e Longo Curso,” Norsul, acesso em jun. 2023, https://www.norsul.com/servicos/navegacao/.

The post Cabotagem no Brasil em 2021 appeared first on International Council on Clean Transportation.

]]>
Coastal shipping in Brazil in 2021 https://theicct.org/publication/coastal-shipping-in-brazil-in-2021-mar24/ Wed, 27 Mar 2024 04:01:33 +0000 https://theicct.org/?post_type=publication&p=38897 Highlights the principal commodities transported through cabotage in Brazil and the entities involved in this sector to explore the potential to synchronize decarbonization efforts and facilitate achieving national net-zero emissions.

The post Coastal shipping in Brazil in 2021 appeared first on International Council on Clean Transportation.

]]>

Like many countries, Brazil restricts shipping between domestic ports to domestic entities. Only Brazilian Navigation Companies, Empresas Brasileiras de Navegação (EBNs), can engage in cabotage.1 In mid-2023, Brazil’s National Agency of Waterway Transportation (Agência Nacional de Transportes Aquaviários or ANTAQ) showed 49 companies registered as EBNs that operate ships in cabotage.2 Here we highlight aspects of the market in 2021, when records show there were 185 ships in Brazil’s cabotage fleet; these were mainly barges, line handlers (vessels that unload oil from production and storage facilities to tankers, and from tankers to monobuoys), container ships, and tankers. About 60% of total transportation capacity was associated with the oil and gas industry. For all segments, a few companies owned most of the fleet and operations.

1 Lei No. 9.432, de 8 de janeiro de 1997, https://www.planalto.gov.br/ccivil_03/leis/l9432.htm.
2 See details of data sources.

Tonnage from 2011 to 2021

Liquid and gaseous bulk was about 77% of total cabotage tonnage in Brazil between 2011 and 2021, while solid bulk made up about 12% of tonnage, containerized cargo was 7%, and general cargo was 3%. Over this time, the tonnage of liquid and gaseous bulk grew by 53%, solid bulk tonnage grew by 7%, containerized cargo tonnage grew the most, by 230%, and general cargo tonnage grew by 10%.

Liquid and gaseous bulk

Of the liquid and gaseous bulk tonnes transported, 98.6% were mineral fuels, mineral oils, and products of their distillation. The remainder was organic chemicals (0.6%), inorganic chemicals and substances (0.4%), and beverages, liquor, and vinegar (0.2%). Most of this comes from offshore oil extraction platforms in Brazil’s Exclusive Economic Zone (EEZ) and the main destinations are the Southeast Region states of Rio de Janeiro and São Paulo, which are home to major oil refineries.3 Ten EBNs owned ships for transporting liquid and gaseous bulk; Petrobras Transporte S.A.—Transpetro had 68% of the fleet (26 ships) and 93% of the total transport capacity in this segment. Empresa de Navegação Elcano S.A. owned 16% of the fleet (six ships) and 3% of total capacity, while Flumar Transportes de Quimicos e Gases Ltda. had 5% of the fleet (two ships) and 3% of total capacity. Others had less than 1%.

3 Empresa de Pesquisa Energética, Balanço Energético Nacional 2022: Ano Base 2021 [Brazilian Energy Balance 2022: Year 2021] (Rio de Janeiro, 2022), https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/topico-638/BEN2022.pdf.

Solid bulk

The cabotage of solid bulk is strongly connected to the mining sector and the main products were ores (91% of total tonnes transported), salt (6%), and solid mineral fuels (1%). Solid bulk transport in cabotage is concentrated in the north of Brazil, and these shipments are mostly bauxite, the third most abundant natural resource in Brazil. Four companies engaged in cabotage of solid bulk. Elcano S.A owned 50% of the fleet (four ships) and had 56% of total transport capacity. Lyra Navegação Marítima owned 25% of the fleet (two ships) and had 10% of the transport capacity. Hidrovias do Brasil owned 13% of the fleet (one ship) and had 23% of total transport capacity, and Norsul owned 13% of the fleet (one ship) and had 10% of the transport capacity. As the transport of bauxite is based on long-term contracts and a dedicated fleet, there is little competition for the EBNs operating in this market.

Containerized cargo

Three EBNs operated in this segment and collaborated to offer multiple services: Aliança Navegação e Logística, Log-In Logística Intermodal, and Mercosul Line. They each had six ships registered. Aliança had 44% of transportation capacity, followed by Log-In (30%), and Mercosul Line (26%). All are subsidiaries of international corporations. Mediterranean Shipping Company (MSC) owns a majority stake in Log-in Logística Intermodal, Aliança is part of AP Moller – Maersk, and Mercosul Line is part of the CMA CGM Group. These EBNs offer feeder operations that transfer foreign cargo for import or export, an important part of cabotage services. Six products represented 51% of total tonnes of cabotage-related container cargo; these and 14 additional products represented 80% of total tonnes. Containerized cargo transport is more distributed throughout Brazil than the other cargo types. Main origin and destination points are in all regions along the coast.

General cargo

Since 2011, general cargo’s share of total cabotage tonnage in Brazil has steadily declined. Two products represent more than 90% of general cargo cabotage: steel products (70%) and cellulose (22%), the primary material for making paper. Forestry products such as wood and charcoal are third most common but represent only 3% of total tonnes transported. Ten ships and two EBNs provided 99% of the transport capacity: Tranship Tranportes Marítimos Ltda. owned five ships and had 24% of transport capacity, while Norsul owned two ships and had 75% of transport capacity. The main origins and destinations of general cargo cabotage are associated with steel products transported from Espírito Santo (Southeast Region) to Santa Catarina (South Region); forest products and cellulose transported from Bahia (Northeast Region) to Espírito Santo (Southeast Region), and steel products from Ceará (Northeast Region) to São Paulo (Southeast Region).

Investing in decarbonization

The BR do Mar program, embodied in Law No. 14.301/2022, updated legislation aimed at increasing the supply and quality of cabotage services in Brazil and promoting the competitiveness of EBNs, especially in the containerized cargo segment.4 Additionally, the company that owns and operates most of the ships operating in cabotage in Brazil, Transpetro, aims to reduce emissions from its ships by 11% and plans to invest BRL 64 million in decarbonization efforts by 2027.5 Among its planned projects, the company lists high-technology hull coatings to prevent fouling by marine organisms (thereby reducing fuel consumption and greenhouse gas emissions), use of advanced algorithms to identify the most efficient routes, optimization of main engine combustion, and use of biofuel blends.6 Furthermore, the major international container shipping companies that control or own companies operating in cabotage in Brazil have published sustainability goals; these goals include decarbonization of their global supply chains. The decarbonization goals published by the companies are included in Table 1.

Table 1. Major international container shipping companies’ decarbonization goals and their Brazilian subsidiaries

International corporation

EBN subsidiary

Decarbonization goals related to international maritime transport

Mediterranean Shipping Company (MSC)

Log-In

Work throughout the MSC value chain to promote the investments needed to be carbon neutral throughout operations, develop logistical support solutions, and focus on energy efficiency.

Work with stakeholders to promote the use of alternative fuels, including the necessary infrastructure and distribution systems.

AP Moller – Maersk

Aliança

Decarbonization target for 2030 compliant with the Science Based Targets Initiative (SBTi) 1.5o C pathway to achieve absolute emissions reductions between 35% and 50% from a 2020 baseline; target of being carbon neutral by 2040 across all scopes and businesses.

CMA CGM Group

Mercosul Line

The 2022 CSR Report said the company aimed to achieve net-zero carbon emissions for Mercosul Line by 2050, including having at least 10% of alternative fuels in its energy matrix by 2023, and reaching 100% renewable electricity in logistics warehouses by 2025.

Pursue initiatives that include the use of alternative fuels in ships and designing ships with greater energy efficiency.

As Brazil’s cabotage fleet primarily transports materials for the oil and gas industry, strategies to decarbonize national maritime transportation will require the participation and support of this sector. Recent analysis showed that supply and container vessels are the ship classes responsible for most of the emissions inside Brazil’s EEZ.7 The engagement of companies operating in the supply and container vessel segments will be crucial for the implementation of national decarbonization measures.

4 Lei No. 14.301, de 7 de janeiro de 2022, https://www.planalto.gov. br/ccivil_03/_ato2019-2022/2022/lei/l14301.htm.
5 Transpetro, “Transpetro Investe em Eficiência Energética e Descarbonização da sua Frota” [invests in energy efficiency and decarbonization of its fleet], news release, August 23, 2023, https://transpetro.com.br/transpetro-institucional/noticias/ transpetro-investe-em-eficiencia-energetica-e-descarbonizacao-da-sua-frota.htm.
6 Transpetro, Relatório de Sustentabilidade 2022 [Sustainability report 2022], https://sustentabilidade.petrobras.com.br.
7 Francielle Carvalho, Recommendations to Develop a Brazilian Maritime National Action Plan (Washington, DC: International Council on Clean Transportation, 2023), https://theicct.org/ publication/recommendation-to-develop-a-brazilian-maritime-national-action-plan-aug23/.

Data sources and methodology

The information presented in the figures was obtained from Brazil’s National Agency of Waterway Transportation (ANTAQ) databases. ANTAQ is responsible for regulating, supervising, and monitoring the activities of waterway transport services and port and waterway infrastructure operations. Two ANTAQ databases were consulted in April and May 2023: “Estatístico Aquaviário” [Waterway statistical panel], http://ea.antaq.gov.br/QvAJAXZfc/opendoc. htm?document=painel%5Cantaq%20-%20 anu%C3%A1rio%202014%20-%20v0.9.3.qvw&lang=pt- BR&host=QVS%40graneleiro&anonymous=true and “Navegação Marítima – Frota Geral – Analítica” [Maritime navigation – general fleet – analytics], http://web.antaq.gov.br/Portal/Frota/ ConsultarFrotaGeral.aspx.

Shipping companies’ websites were consulted, but when there were differences between the ANTAQ databases and companies’ reports, data from ANTAQ was prioritized. For example, there are differences between the container ship fleet data in ANTAQ’s databases and the information provided by the three EBNs on their websites. The information presented in this publication was from the ANTAQ database. For the general cargo fleet, we also found differences between ANTAQ data and companies’ websites. The ANTAQ database contains information about general cargo vessels that is mixed with barges that might not be operating in the general cargo sector. For example, although Tranship’s fleet is included in ANTAQ’s general cargo database, the company operates more in the oil and gas sector with open deck barges, according to its website.8

The ANTAQ database indicates that companies in the general cargo segment operate with open deck barges designed to transport special cargo rather than general cargo; some of these barges are associated with the oil and gas industry. Norsul’s website says that it operates in the general cargo segment with a fleet of barges and ocean pusher craft designed to transport cellulose and steel products.9 To be consistent with the other cabotage transport segments presented in this analysis, all data presented in the figures were obtained from ANTAQ database.

The ownership of the EBNs was sourced from the following:

 

8 “Frota” [Fleet], Tranship, accessed April 2023, http://www.tstranship.com.br/frota.html . The ANTAQ database indicates that companies in the general cargo segment operate with open deck barges designed to transport special cargo rather than general cargo; some of these barges are associated with the oil and gas industry. Norsul’s website says that it operates in the general cargo segment with a fleet of barges and ocean pusher craft designed to transport cellulose and steel products.9

9 “Navegação – Cabotagem e Longo Curso” [Navigation – Cabotage and Long Haul], Norsul, accessed April 2023, https://www.norsul.com/servicos/navegacao/.To be consistent with the other cabotage transport segments presented in this analysis, all data presented in the figures were obtained from ANTAQ database.

The post Coastal shipping in Brazil in 2021 appeared first on International Council on Clean Transportation.

]]>
Maricruz Fun Sang Cepeda https://theicct.org/team-member/maricruz-fun-sang-cepeda/ Fri, 15 Mar 2024 20:27:10 +0000 https://theicct.org/?post_type=team-member&p=39028 Maricruz, a Ph.D. in Ocean Engineering, brings a unique blend of academic expertise and real-world experience. Her background includes both research and hands-on work as an onboard inspector. Resilient, passionate, and multilingual (Portuguese, English, Spanish, and French), she is a highly approachable expert in her field.

The post Maricruz Fun Sang Cepeda appeared first on International Council on Clean Transportation.

]]>
Maricruz, a Ph.D. in Ocean Engineering, brings a unique blend of academic expertise and real-world experience. Her background includes both research and hands-on work as an onboard inspector. Resilient, passionate, and multilingual (Portuguese, English, Spanish, and French), she is a highly approachable expert in her field.

The post Maricruz Fun Sang Cepeda appeared first on International Council on Clean Transportation.

]]>